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Phasers
! Allows threads to coordinate by phases 

– Similar to CountDownLatch and CyclicBarrier, but more flexible 

! Registration 
– Number of parties registered may vary over time 

• Same as count in CountDownLatch, parties in CyclicBarrier 
• A party can register/deregister itself at any time 

! ManagedBlocker 
– Can be used in the ForkJoinPool
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Demo of Cojoining Approaches

github.com/kabutz/modern-synchronizers
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Surprise For All You Wonderful Programmers
! For those listening to me live today, here is a surprise 

–  tinyurl.com/geekout-phaser 

! Will expire once lunch is over, so get it immediately
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StampedLock
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What is StampedLock?
! Java 8 synchronizer 

! Allows optimistic reads 
– ReentrantReadWriteLock only has pessimistic reads 

! Not reentrant 
– This is not a feature 

! Use to enforce invariants across multiple fields 
– For simple classes, synchronized/volatile is easier and faster 

! Can split locking and unlocking between threads
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Pessimistic Exclusive Lock (write)
public class StampedLock { 
  long writeLock() // never returns 0, might block 

  // returns new write stamp if successful; otherwise 0 
  long tryConvertToWriteLock(long stamp) 

  void unlockWrite(long stamp) // needs write stamp 

// and a bunch of other methods left out for brevity
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Pessimistic Non-Exclusive Lock (read)
public class StampedLock { // continued ... 
  long readLock() // never returns 0, might block 

  // returns new read stamp if successful; otherwise 0 
  long tryConvertToReadLock(long stamp) 

  void unlockRead(long stamp) // needs read stamp 

  void unlock(long stamp) // unlocks read or write
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Optimistic Non-Exclusive Read (No Lock)
public class StampedLock { // continued ... 
  // could return 0 if a write stamp has been issued 
  long tryOptimisticRead() 

  // return true if stamp was non-zero and no write 
  // lock has been requested by another thread since 
  // the call to tryOptimisticRead() 
  boolean validate(long stamp)
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Code Idiom for Optimistic Read
public double optimisticRead() { 
  long stamp = sl.tryOptimisticRead(); 
  double currentState1 = state1,  
         currentState2 = state2, ... etc.; 
  if (!sl.validate(stamp)) { 
    stamp = sl.readLock(); 
    try { 
      currentState1 = state1; 
      currentState2 = state2, ... etc.; 
    } finally { 
      sl.unlockRead(stamp); 
    } 
  } 
  return calculateSomething(currentState1, currentState2); 
}
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! Poor critter was  
roaming around 
Crete 

– The pet became  
too big 

– Or hungry 

! Eventually died 
in our cold  
winter months

Sifis the Cretan Crocodile (RIP)
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Introducing the Position Class
! When moving from (0,0) to (5,5), we want to travel in a diagonal line 

– We don’t want to ever see our position at (0,5) or especially (5,0)
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Refactoring Position and IntList

github.com/kabutz/modern-synchronizers
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VarHandle
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Java 9 VarHandles Instead of Unsafe
! VarHandles remove biggest temptation to use Unsafe 

– As fast as Unsafe 

! Can read and write fields of class 
– getVolatile() / setVolatile() 
– getAcquire() / setRelease() 
– getOpaque() / setOpaque() 
– get() / set() - plain 
– compareAndSet(), returning boolean 
– compareAndExchangeVolatile(), returning found value always
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Refactoring Position from 
StampedLock to VarHandle

tinyurl.com/geekout-phaser
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Question Time
! Remember: tinyurl.com/geekout-phaser  -  valid until lunch 

! Twitter: @heinzkabutz        Newsletter: www.javaspecialists.eu
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