
Thread Safety with Phaser, StampedLock and VarHandle

Thread Safety with Phaser,
StampedLock and VarHandle

Dr Heinz M. Kabutz

!1

Thread Safety with Phaser, StampedLock and VarHandle

Phaser

!2

Thread Safety with Phaser, StampedLock and VarHandle

Phasers
! Allows threads to coordinate by phases

– Similar to CountDownLatch and CyclicBarrier, but more flexible

! Registration
– Number of parties registered may vary over time

• Same as count in CountDownLatch, parties in CyclicBarrier
• A party can register/deregister itself at any time

! ManagedBlocker
– Can be used in the ForkJoinPool

!3

Thread Safety with Phaser, StampedLock and VarHandle

Demo of Cojoining Approaches

github.com/kabutz/modern-synchronizers

!4

Thread Safety with Phaser, StampedLock and VarHandle

Surprise For All You Wonderful Programmers
! For those listening to me live today, here is a surprise

– tinyurl.com/geekout-phaser

! Will expire once lunch is over, so get it immediately

!5

Thread Safety with Phaser, StampedLock and VarHandle

StampedLock

!6

Thread Safety with Phaser, StampedLock and VarHandle

What is StampedLock?
! Java 8 synchronizer

! Allows optimistic reads
– ReentrantReadWriteLock only has pessimistic reads

! Not reentrant
– This is not a feature

! Use to enforce invariants across multiple fields
– For simple classes, synchronized/volatile is easier and faster

! Can split locking and unlocking between threads

!7

Thread Safety with Phaser, StampedLock and VarHandle

Pessimistic Exclusive Lock (write)
public class StampedLock { 
 long writeLock() // never returns 0, might block 

 // returns new write stamp if successful; otherwise 0
 long tryConvertToWriteLock(long stamp)

 void unlockWrite(long stamp) // needs write stamp

// and a bunch of other methods left out for brevity

!8

Thread Safety with Phaser, StampedLock and VarHandle

Pessimistic Non-Exclusive Lock (read)
public class StampedLock { // continued ... 
 long readLock() // never returns 0, might block 

 // returns new read stamp if successful; otherwise 0
 long tryConvertToReadLock(long stamp)

 void unlockRead(long stamp) // needs read stamp

 void unlock(long stamp) // unlocks read or write

!9

Thread Safety with Phaser, StampedLock and VarHandle

Optimistic Non-Exclusive Read (No Lock)
public class StampedLock { // continued ...
 // could return 0 if a write stamp has been issued
 long tryOptimisticRead()

 // return true if stamp was non-zero and no write
 // lock has been requested by another thread since
 // the call to tryOptimisticRead()
 boolean validate(long stamp)

!10

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!11

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!12

We get a
stamp to

use for the
optimistic

read

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!13

We read field
values into
local fields

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!14

Next we validate
that no write locks
have been issued
in the meanwhile

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!15

If they have,
then we don't
know if our
state is clean

Thus we acquire a
pessimistic read
lock and read the

state into local
fields

Thread Safety with Phaser, StampedLock and VarHandle

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

!16

Thread Safety with Phaser, StampedLock and VarHandle !17

! Poor critter was  
roaming around 
Crete

– The pet became  
too big

– Or hungry

! Eventually died 
in our cold  
winter months

Sifis the Cretan Crocodile (RIP)

Thread Safety with Phaser, StampedLock and VarHandle

Introducing the Position Class
! When moving from (0,0) to (5,5), we want to travel in a diagonal line

– We don’t want to ever see our position at (0,5) or especially (5,0)

!18

(5,5)

(0,0)

👍 👎 (5,5)

(0,0)

(5,0)

Thread Safety with Phaser, StampedLock and VarHandle

Refactoring Position and IntList

github.com/kabutz/modern-synchronizers

!19

Thread Safety with Phaser, StampedLock and VarHandle

VarHandle

!20

Thread Safety with Phaser, StampedLock and VarHandle

Java 9 VarHandles Instead of Unsafe
! VarHandles remove biggest temptation to use Unsafe

– As fast as Unsafe

! Can read and write fields of class
– getVolatile() / setVolatile()
– getAcquire() / setRelease()
– getOpaque() / setOpaque()
– get() / set() - plain
– compareAndSet(), returning boolean
– compareAndExchangeVolatile(), returning found value always

!21

Thread Safety with Phaser, StampedLock and VarHandle

Refactoring Position from
StampedLock to VarHandle

tinyurl.com/geekout-phaser

!22

Thread Safety with Phaser, StampedLock and VarHandle

Question Time
! Remember: tinyurl.com/geekout-phaser - valid until lunch

! Twitter: @heinzkabutz Newsletter: www.javaspecialists.eu

!23

